Code No.: 22957

VASAVI COLLEGE OF ENGINEERING (AUTONOMOUS), HYDERABAD

Accredited by NAAC with A++ Grade

M.Tech. (C.S.E.) II-Semester Main Examinations, September-2022

Advanced Algorithms

Time: 3 hours

Max. Marks: 60

Note: Answer all questions from Part-A and any FIVE from Part-B

 $Part-A (10 \times 2 = 20 Marks)$

Q. No.	Stem of the question	M	L	CO	PO
1.	Give the order of vertices in which they are visited when the following graph is traversed using DFS algorithm considering A as a source vertex.	2	3	1	1,2,3
	B Comment at hedre				
	H I I I I I I I I I I I I I I I I I I I				
2.	Write a BFS algorithm.	2	1	1	1,2
3.	Explain the basic principle of a Greedy method of algorithm design technique.	2	3	2	1,2,3
4.	Obtain all the maximal graph matching sets for the following graph.				
×		2	3	2	1,2,3
,	B D				
5.	The matrix A is transformed to the matrix shown below by an algorithm which computes LU decomposition. Obtain the matrices L and U.	2	2	3	1,2,3
	Matrix A				
	2 3 1 5 6 13 5 19 \rightarrow 2 3 1 5 3 4 2 4 2 19 10 23				
	1 4 1 2 4 10 11 31 1 4 1 2 2 1 7 3				

6.	If the following graph is input with vertex s as source and the vertex t as sink, which augmenting path is selected by the Edmond's Karp algorithmin the first iteration?	2	2	3	1,2
1	10000 Y 10000				
	1 t 100000 x 100000				
	Thees in which they are enact with the later age -2				
7.	Transform the integer number 11 from base representation to modulo representation, if p1 is 3 and p2 is 4.	2	3	4	1,2,3
8.	Given P1=3,p2=4,p3=5, what is the range of numbers in which each number has a unique modulo representation?	2	3	4	1,2,3
9.	Draw a Venn diagram showing the commonly believed relationship between P, NP, NP-Hard and NP-complete classes of problems. Which class of problems the sorting belongs to?	2	3	5	1,2
10.	Give two main types of randomized algorithms.	2	1	5	1.2
	Part-B $(5 \times 8 = 40 \text{ Marks})$				
11. a)	Explain, with the help of an example, topological sorting.	4	1	1	1,2
b)	Explain Merge sort algorithm.	4	1	1	1,2
12. a)	Explain how the augmenting paths are used to find a solution to maximum matching problem.	4	2	2	1,2
b)	Identify an augmenting path in the following graph and enhance the cardinality of the graph matching $M = \{ (2,7), (5,4) \}$	4	2	2	1,2,3
	6 7 3				
	5) 4				
13. a)	Obtain the time complexity of Strassen's matrix multiplication algorithm	4	2	3	1,2
b)	Explain Ford-Fulkerson method to compute maximum flow in a given graph.	4	2	3	1,2

. a)	Explain the basic principles of Dynamic Programming paradigm of algorithm design.	4	2	4	1,2
b)	State and prove Chinese Remainder Theorem.	4	3	4	1,2,3
15. a)	Plot the feasible region for the following set of linear constraints.	4	3	5	1,2,3
	$4x_{1} - x_{2} \leq 8$ $2x_{1} + x_{2} \leq 10$ $5x_{1} - 2x_{2} \geq -2$ $x_{1}, x_{2} \geq 0$				
b)	Explain Advanced Number Theoretic algorithm.	4	2	5	1,2
16. a)	Sort the following data using quick sort algorithm showing all the intermediate steps.	4	3	2	1,2
	95,12,88,27,10,765,25,44,33,9				
b)	Explain Edmond Blossom algorithm to compute augmenting path with an example.	4	2	2	1,2
17.	Answer any two of the following:				
a)	Explain the procedure of LUP decomposition.	4	2	3	1,2
b)	Design an algorithm with time complexity $O(n^2)$ for polynomial interpolation.	4	3	4	1,2,3
c)	Explain Approximation algorithms.	4	1	4	1,2

M: Marks; L: Bloom's Taxonomy Level; CO; Course Outcome; PO: Programme Outcome

i)	Blooms Taxonomy Level – 1	20%
ii)	Blooms Taxonomy Level – 2	40%
iii)	Blooms Taxonomy Level – 3 & 4	40%
